
SAS Programming Fundamentals I

DCS/TASC/Advanced Support Team
Center for Information Technology
National Institutes of Health

Summer 2001

1

SAS Programming Fundamentals I

Many software applications are either totally menu driven, or totally command driven(“enter a
command -see the result”). Base SAS software is neither totally menu driven or totally
command driven. With Base SAS software, you use statements to write a series of instructions
called a SAS program

This course introduces Base SAS software programming concepts. It provides those with
expertise in their field but no programming experience, a programming foundation. The focus
is on creating SAS data sets from raw data files (also referred to as text, ASCII, sequential, or
flat files). Your raw data may be either internal to your SAS program, or in a separate file.
Either way, you must tell SAS where to find and how to read your data.

MODULE 1: Getting started using SAS System Software

• SAS program objectives
• SAS programming process
• Two basic components of a SAS program
• SAS statements
• Naming conventions

MODULE 2: Where to find and how to read raw data

• Locate Data Lines—DATALINES, INFILE, FILENAME statements
• Identify variable attributes—numeric or character variable
• Read data lines—INPUT statement styles
• Read dates with SAS defined informats
• Write variables with SAS defined formats

MODULE 3: Temporary versus permanent SAS data sets

• DATA step logic
• PROC step logic
• Interpret messages in the SAS log
• Create temporary SAS data set
• Create permanent SAS data set
• Examine Proc Contents procedure

MODULE 1: Getting started using SAS System Software

• SAS program objectives

• SAS programming process

• Two basic components of a SAS program

• SAS statements

• Naming conventions

1. SAS program objectives

(1) What do you want to be able to draw conclusions about?

(2) What is the desired output?

• type of analysis desired
• type of summary desired
• type of report desired

(3) Know your data, that is, what data is needed to solve the program objectives?

If you are reading from a raw data file (also referred to as text, ASCII, sequential, or flat
files)

• Examine the record layout—know the arrangement of the data values
We must always be sure that we understand our data. If we do not, then it is essential that
we ask for clarification. Even the best analytical tool in the world can only produce rubbish if
that is what we give it.So, before we can start to read raw data, we should view it to confirm
that it looks as we expect.
•Prepare good test data.
•Edit the data lines
•Identify missing value(s)

(4) Specify the variable name(s) and attribute and know what the variable values represent.

(5) Begin the programming process:

• Write the SAS program
• Test the SAS program with small and representative data

Input

Know your data

Write

SAS program
& Submit it

Output

View SAS Log
& SAS Output

1

(For the next few pages don’t worry about understanding all the details, definitions or syntax.
Definitions and syntax rules will be explained as we move along)

Objective: We would like to obtain a SAS data set sorted by the name.

Given: data lines

Please note:
The words ‘column ruler’ and ‘data line 1’, ‘data line 2’,etc...are shown to
illustrate concepts discussed during the class presentation. These words would NEVER
be included in the actual data.

column 1 2
ruler 1234567890123456789012345

data line 1 PAUL M 27 72 140
data line 2 JENNIFER F 28 64 135
data line 3 RENEE F 35 54 128
data line 4 MANUEL M 35 60 125
data line 5 TONY M 32 68 130

Data layout - a guide to identify the field locations for the raw data (‘data layout’ is
sometimes called the ‘field dictionary’)

Column name Column location Type or Attribute Description

FNAME 1-8 Character Individuals’ first name
SEX 11 Character M=Male, F=Female
AGE 13-14 Numeric Age range: 27 to 35
HT 16-17 Numeric Height in inches
WT 20-22 Numeric Weight in pounds

2

2. SAS Processing

SAS processing is the way the SAS language reads and transforms input data and generates
the kind of output that you want.

A SAS program is a series of SAS statements executed in order. A SAS program is built on
two basic components:

DATA step
PROC step

A SAS program may break-down into any number of DATA steps or PROC steps. It may be
viewed as a string of steps in any order. Just as you can stack building blocks in any order,
you can arrange DATA and PROC steps in any order.

DATA and PROC steps are made up of SAS statements. A step may have as few as one or as
many as hundreds of statement. Each statement gives information or instructions to SAS.

Most statements work in only one type of step - in DATA steps but not PROC steps, or vice
versa.

Generally, the DATA step manupulates data, and the PROC step analyzes, produces reports,

Data step
DATA Display_Sample;

 INPUT FNAME $ 1-8 SEX $ 11 AGE 13-14
HT 16-17 WT 20-22;

DATALINES;
PAUL M 27 72 140
JENNIFER F 28 64 135
RENEE F 35 54 128
MANUEL M 35 60 125
TONY M 32 68 130
;

Proc step PROC SORT;
 BY FNAME;

Proc step PROC PRINT;
 TITLE ‘Display of SAS data set - Display_Sample';
RUN;

3

SAS Processing

SAS Data sets
 or
Raw data DATA SAS

external data Step Data Set
instream data

PROC
Step

Report SAS SAS
Data set Log

4

2.1 SAS Enhanced Editor, SAS Log, and SAS Output windows

SAS Enhanced Editor window

In the Windows operating environment, an Enhanced Editor window opens by default. Like
the Program Editor(e.g.SAS Version 6), you can use the Enhanced Editor window to enter,
edit, and submit SAS programs. You can open multiple Enhanced Editor windows. To display
an additional Enhanced Editor window, go to View and select Enhanced Editor.

5

2.2 SAS Log window

The Log window displays messages about your SAS session and any SAS
programs you submit.

After you submit a SAS program, any notes, errors, or warnings associated with
your program as well as the program statements will appear in the Log window.
These messages can help you debug a SAS program.

ALWAY check the SAS Log window.
Submitting the SAS program does not mean your SAS program executed without
error, warning, or invalid data messages.

6

SAS Output window: SAS output generated by the PROC(s)

7

3. DATA step

A DATA step consists of a group of statements in the SAS language that reads raw data, or SAS
data sets to create SAS data set(s). Once your data is accessible as a SAS data set, you can
analyze the data and write reports by using any SAS PROCedure.

3.1 DATA A DATA step in a program begins with a DATA statement and ends
step with a DATALINES statement, a RUN statement, another DATA statement, or

another PROC statement.

A typical program starts with a DATA step to create a SAS data set and then
passes the SAS data set to a PROC step for processing.

A sample DATA Step is entered in the Enhanced Editor window:

DATA Display_Sample;
 INPUT FNAME $ 1-8 SEX $ 11 AGE 13-14

HT 16-17 WT 20-22;
DATALINES;
PAUL M 27 72 140
JENNIFER F 28 64 135
RENEE F 35 54 128
MANUEL M 35 60 125
TONY M 32 68 130
;

8

3.1.1 SAS data set

When you work with SAS, you use files that are created and maintained by SAS, as well as files
that are created and maintained by your operating environment, and that are not related to
SAS. Files with formats or structures known to SAS are referred to as SAS files.
All SAS files reside in a SAS data library.

The most commonly used SAS file is a SAS data set.

A SAS data set is a group of data values that SAS creates and processes. A SAS data set contains

• descriptor information which describes the contents of the SAS data set

• a table with observations and variables

• observations are organized in rows
An observation is a collection of data values that is associated with an
entity such as a patient in a medical clinic

• variables are organized in columns
Variables are characteristics of these entities, such as patient admission
date, etc... When data values are incomplete, SAS uses missing values.

The following sample output is generated from the PROC PRINT procedure.
It displays a table (e.g. a SAS data set).

 OBS FNAME SEX AGE HT WT

 1 JENNIFER F 28 64 135
 2 MANUEL M 35 60 125
 3 PAUL M 27 72 140
 4 RENEE F 35 54 128
 5 TONY M 32 68 130

Operating environment note:

OS/390 mainframe:
There is no limit to the number of variables that can be stored in a SAS data set.

Windows:
The maximum number of variables in a single SAS data set under Windows is 32,767. In addition, an observation
under Windows cannot be longer than 5M. Therefore if you want your data set to contain 32,767 character
variables, the longest each variable can be is 160 bytes.

However, a DATA step can reference more than 32,767 variables, if you write only 32,767 or fewer variables to
the SAS data set. For example, you could drop some variables with a DROP= SAS data set option. The
maximum number of variables a DATA step can reference is 2,147,483,647.

9

3.1.2 Descriptor portion of the SAS data set

The descriptor portion of a SAS data set is automatically created by SAS. The descriptor
information for a SAS data set makes the data set self-documenting, that is, each data set can
supply the attributes of the data and of its variables. Once the data is in the form of a SAS data
set, you do not specify the attributes of the data or the variables in your program statements.
SAS obtains the information directly from the data set.

Descriptor information includes...

• Data set name
• Date created
• Number of observations, observation length
• Number of variables

and for each variable the descriptor infomation includes...

• Type(numeric or character)
• Length (storage size in bytes)
• Name
• Number
• Label(if any)
• Informat for input(if any)
• Format for output(if any)

The PROC CONTENTS procedure lists the names of SAS data sets in a SAS library and
other information from the directory of a SAS data set.

Sample program:

PROC CONTENTS DATA = Display_Sample ;
 Title ‘Displays descriptor portion of SAS data set - Display_Sample’;
RUN;

The output of the PROC CONTENTS procedure displays the descriptor portion of the SAS data
set Display_Sample

...shown on next page...

10

3.1.3 Output from the PROC CONTENTS procedure

Displays descriptor portion of SAS data set Display_Sample

 The CONTENTS Procedure

Data Set Name: WORK.DISPLAY_SAMPLE Observations: 5
Member Type: DATA Variables: 5
Engine: V8 Indexes: 0
Created: 11:07 Thursday, May 11, 2000 Observation Length: 40
Last Modified: 11:07 Thursday, May 11, 2000 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:

 -----Engine/Host Dependent Information-----

Data Set Page Size: 4096
Number of Data Set Pages: 1
First Data Page: 1
Max Obs per Page: 101
Obs in First Data Page: 5
Number of Data Set Repairs: 0
File Name: C:\temp\SAS Temporary Files_TD193\display_sample.sas7bdat
Release Created: 8.0000M0
Host Created: WIN_NT

 -----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos

 3 AGE Num 8 0
 1 FNAME Char 8 24
 4 HT Num 8 8
 2 SEX Char 1 32
 5 WT Num 8 16

11

3.2 Proc step

Definition: A group of SAS statements beginning with a PROC statement that
invoke a SAS procedure with a SAS data set as input.

The SAS Software System contains a collection of procedures (PROCs). They perform specific
tasks on SAS data sets.

For instance...

(1) PROC SORT - to re-arrange the observations by any variable(s)

PROC SORT;
BY variable-list;

12

(2) PROC PRINT - to display the SAS data set

The PROC PRINT procedure is perhaps the most widely used SAS procedure.
You will see it used frequently in these classnotes to display a SAS data set. In its simplest form,
PROC PRINT(with no options) displays all variables for all observations.

PROC PRINT;

 (3) PROC MEANS - to calculate descriptive statistics

One of the first things people usually want to do with their data, after reading it, is look at
some simple statistics. Statistics such as the mean, standard deviation, and minimum and
maximum values give you a feel for your data. In its simplest form, PROC MEANS(with no
options) displays the number of non-missing values, the means, the standard deviation, the
minimum and maximum values for each numeric variable.

PROC MEAN;

 (4) PROC FREQ - to generate a simple list of counts

The most obvious reason for using PROC FREQ is to create tables showing the
distribution of categorical data values, but PROC FREQ can also reveal irregularitiy in
your data. Fo instance, data entry errors are often glaringly obvious in a frequency table.

In its simplest form... PROC FREQ ;
TABLES variable-list ;

...produces counts for each variable in the TABLE statement.

Beside the Base SAS procedures each of the SAS products or modules in the SAS Software
System has an large number of PROC (s) or Procedures. Each PROC is designed to perform
specific tasks.

13

Exercise 1

Check the appropriate selection

(1) Before you begin to write a SAS program you must

a . know what you want to be able to conclude
b. know your data
c. prepare a good test data set
d. all of the above

(2) A data value is

a . a line of data
b. a unit of information
c. a collection of data lines

(3) An observation is

a . the name associated with a column
b. a row in a SAS data set that contains the specific data values for an individual entity

(4) The function of a DATA step is to

a . describe the data to SAS
b. get the data in shape for processing
c. both a and b

(5) How many types of SAS steps are there?

a . one
b. two
c. three
d. none of the above

(6) The function of the PROC step is to

a . subset your data
b. run your program
c. call and execute a procedure

(7) The function of the DATA statement is to

a . begin a DATA step
b. name the SAS data set being created
c. both a and b

(8) To display observations and variables from a SAS data set you would invoke

a . PROC SORT
b. PROC MEANS
c. PROC PRINT

14

4.1 SAS Statements

A SAS statement is a series of items that may include keywords, SAS names, special characters,
and operators. All SAS statements end with a semicolon. A SAS statement either requests SAS
to perform an operation or gives information to the system.

Most SAS statements begin with a special word identified as a “keyword”. The keyword
communicates the purpose of the statement to the SAS system.

Sample SAS statements

Keyword Purpose

DATA sasdsname; Tell SAS to begin a DATA step

DATALINES; Indicate the raw data lines are entered in the program,
that is, following the DATALINES statement. The term
“instream” is used to define this situation. The
DATALINES statement is more frequently used to test
a SAS program with a small data sample.

INFILE fileref ; Identifies an external file to read with an INPUT
statement.

INPUT variable-list ; Describes the arrangement of values in the input data
record and assigns input values to the corresponding
SAS variables

(...continued on next page)

15

Keyword Purpose

IF condition THEN action; Allow SAS to conditionally execute statements.
ELSE IF condition THEN action;
ELSE IF condition THEN action;
ELSE action ;

IF expression ; SUBSETTING IF statement...selects observation to
include in the data set

IF expression then DELETE ; DELETE statement...selects observations to exclude

PROC procedure name ; Tell SAS to begin a Proc step.

TITLEn ‘text’ ; Place title at the top of every page of the SAS output.

LABEL variable=’text’ ; Assign descriptive text to variable(s).

(Long label names (256) in SAS version 8)

FORMAT variable formatw. ; Associate format with variable

RETAIN variables initial-value ; To initial variable and retain its value from one
iteration to another

BY variable-list ; a BY statement required in the PROC SORT
 procedure step

WHERE condition ; When used in a PROC step, observations that satisfy
the condition are selected by the PROC

16

4.1.1 Syntax rules

Many software applications are either menu driven, or command driven(“enter a command-
see the result”). SAS is neither. With SAS, you use statements to write a series of instructions
called a SAS program.

The following SAS “grammar” rules control all SAS statements in SAS programming:

(1) most SAS statements begin with a keyword
(in Base SAS exceptions are the SUM statement and the ASSIGNMENT statement)

(2) signal the end of each SAS statement with a semicolon

(3) upper- or lowercase, or a mixture of the two

(4) free-format

• Can begin SAS statements in any column of a line and write several statements on
the same line

Proc sort ; BY fname ;

• Can begin a statement on one line and continue it on another line, but you cannot
split a word between two lines

INPUT FNAME $ 1-8 SEX $ 11
AGE 13-14 HT 16-17
WT 20-22;

• SAS “words” can be separated with as many blanks as you want
Why?
A blank is not treated as a character in a SAS statement unless it is enclosed in
quotation marks(e.g. a literal).

DATA Display_Sample
; INPUT FNAME $ 1-8 SEX $ 11
AGE 13-14 HT 16-17 WT 20-22;

17

4.2 Good programming style suggestions

It is recommended that you have a neat looking program with each statement on a line by
itself and indentions to show the various parts of the program.

(1) Begin DATA and PROC statements in column 1 and indent other statements.

DATA Display_Sample;
INFILE _____ ;
INPUT _____ ;

(2) Use one line per SAS statement when possible.

(3) Indent continuation of a SAS statement. This is a simple way to make your programs
more readable, and it’s a good habit to form. Programs should be formatted in a way
which makes them easy to read and understand. Easy-to-read programs are time-savers
for you, or the technical consultant.

INFILE ______ ;
INPUT FNAME $ 1-8 SEX $ 11

AGE 13-14 HT 16-17
WT 20-22;

(...continued on next page)

18

(4) Use blank lines to separate major components of the SAS program.

PROC FORMAT;
VALUE $SEXFMT ‘M’ = ’MALE’ ‘F’ = ‘FEMALE’;

DATA NOT_AN_ACTUAL_SAS_PROGRAM ;
INPUT list variables and attributes ;

/* enter other SAS statements in the DATA step */

/* if you use ‘instream’ data, then a DATALINES statement is the very last
statement in the DATA step */

DATALINES;
 (enter data lines)

;

PROC PRINT;
run;

(5) Comments are usually used to annotate the program, making it easy for someone to read
your program and understand what you have done and why.
Two styles of comments you can use: (a) start with and asterisk (*) and ends with a
semicolon, or (b) start with slash asterisk (/*) and ends with an asterisk slash (*/).

19

5. Naming conventions

SAS names that have increased to a maximum of 32 character are the following:

Columns or data set variables

SAS table(s) or SAS data set name(s)

Catalogs

Macro variables

Macros

Arrays

SAS names that have a maximum of 8 character are refered to as...

• libref

for instance... LIBNAME libref c:\pathname” ;

• fileref

for instance... FILENAME fileref c:\pathname” ;

• format-names for user-defined or user-written formats

(user-defined or user-written format used in the VALUE statement of
the PROC FORMAT procedure)

SAS name that has a maximum of 7 character is refered to as...

• informat-name for user-defined or user-written informat

(user-defined or user-written informat used in the INVALUE statement
of the PROC FORMAT procedure)

Technical speaking, each word in the SAS language belongs to one of four categories

• a SAS name ... for instance, data , _new , yearcutoff , descending

• a SAS literal ... for instance, ‘Chicago’ , ‘1234’ , ‘1998-00’

• numbers ... for instance, 5683 , 2.35 , -5 , ‘24may98’d

• special characters ... for instance, this is any single keyboard character other than
letters, numbers, the underscore, and the blank

20

5.1 SAS table name(e.g. SAS data set name)

• are from 1 to 32 characters in length

• SAS data set name is not stored in mixed case. You can enter upper or lowercase letters.
However, SAS processes names as uppercase regardless of how you type them.

• can be specified with ‘pathname’

for instance....

 PROC PRINT DATA = “c:\SAS Crs212demo\crash” ;
...in the pathname you do not need to enter the .sas7bdat extension associated with
the two-level name of the SAS data set crash.sas7bdat

or

You may continue to use the LIBNAME statement as experienced SAS users may be
accustomed to do.

LIBNAME Crs212 “c:\SAS Crs212demo” ;

PROC PRINT DATA = Crs212.crash ;
RUN;

• must start with a letter (A through Z) or an underscore (_)
subsequent characters can be letters, numeric digits (0, 1, ...9), or underscores (_)

• Must NOT contain blanks or any other special character such as %$!*&#@;,.
(Exception... In filerefs only, you can use the dollar sign($), the pound sign(#),
and the at sign(e.g. @)

• do not use the following names when you create SAS data sets:
NULL , _DATA_ , _LAST_

21

5.1.2 Column name or variable name

• are from 1 to 32 characters in length

• must start with a letter (A through Z) or an underscore (_)

• can contain letters, numerals, or underscores (_)

• Must NOT contain blanks or any other special character such as %$!*&#@;,.

• can be stored in mixed case

The mixed case is remembered and used for presentation purposes only. (SAS stores the
case used in the first refernce to a variable.) When SAS processes variable names, however,
it internally uppercases them. You cannot, therefore, use the same letters with different
combinations of lower- and- uppercase to represent different variables. For example, cat,
Cat, and CAT all represent the same variable.

When a column name is created, the first usage of the column name determines its
capitalization pattern for reports and displays. Any subsequent reference to the column
name, whether in a procedure or a DATA step, is case-insensitive.

• SAS reserves a few names for automatic variables and variable lists. When creating
variables, do not use the names of special SAS automatic variables
(for example, _N_ and _ERROR_).

22

5.1.3 Numbered range list

It is usually wise to choose variable names that help you remember which name goes
with which variable.

There are times where you may have a very large number of variables to list. In such
situations you may opt for the abbreviated list.

• Numbered range lists require you to have a series of variables with the same name, except
for the last character or characters, which are consecutive numbers. The numbers can start
and end anywhere as long as the number sequence between is complete.

For instance...

INPUT var3 var4 var5 var6 var7 ; or INPUT var3 - var7 ;

• Name range lists Name range lists depend on the internal order, or position, of the
variables in the Program Data Vector(PDV).

For instance...

INPUT x a c h b ;

In a KEEP statement the following abreviated form is accepted
KEEP x -- b ;
/* that is, all variables ordered from variable x through variable b */

23

Exercise 2

(1) Place the word valid or invalid in the blank space corresponding to each SAS name.

SAS Name VALID or INVALID?

(1) Y_1996
(2) _STATE
(3) STR - CODE
(4) ZIP CODE
(5) 1991
(6) END_DATE
(7) 2-Seats
(8) DEPARTMENT
(9) DEPT
(10) ZIPCODE

(2) Circle syntax errors in SAS statements and explain your answer.

(a) DATA SYN-TAX1;
INPUT CITY $ 1-6 DAYS 15

DATALINES;
PARIS 8
LONDON 6
ROME 3
;

PROC PRINT
RUN ;

(b) DATA TEST;
INPT NAME $ 1-12 SCORES 14-16 ;

DATALINES;
JAMES 85
JOHN 96
MARY 100
;

PROC PRINT;
RUN;

(...continued on next page)

24

2(c) Names of the SAS data sets created in (a) and (b)?
Assumes you already made necessary corrections in (2a) and 2b)

2(d) How many SAS statements does the SAS System recognize in (b)?
Assumes you already made necessary corrections in (2b)

(3) The following SAS program represents poor format and programming style.

DATA PoorFormat;
INPUT TEAM $ 1-3 SCORE 5-6 COACH $ 10-15

;IF SCORE = 98;
DATALINES;
REG 91 COX
GLM 98 SMITH
;

PROC PRINT;
VAR TEAM;

Rewrite the SAS program using the recommended suggestions for good programming style.

25

MODULE 2: Where to find and how to read raw data

• Locate Data Lines—DATALINES, INFILE, FILENAME statements

• Identify variable attributes—numeric or character variable

• Read data lines—INPUT statement styles

• Read dates with SAS defined informats

• Write variables with SAS defined formats

6. Methods: Getting data into the SAS System

SAS System software provides a number of ways to bring a variety of external data formats
into SAS.

• Reading raw data files, text, ASCII, sequential, or flat files through the DATA step

In terms of getting raw data into SAS this course will only focus on using the
functions of the INPUT statement in the Data step to read raw data.
The raw data file is often referred to as a text file, an ASCII file , a sequential
file ,or a flat file.

• Point-and-Click data entry methods...

1) Microsoft Excel and other standard data sources are accessed through the
SAS Import Wizard Facility. The SAS Import Wizard is most frequently used.

‘Fire-up’ SAS >>> File >>> Import Data >>> follow instructions in the menu-
driven Import Wizard

Standard data sources imported in SAS on windows environment:

(a) Excel2000 data
(b) Excel5 data
(c) Excel4 data
(d) ACCESS 2000 data
(e) ACCESS 97 data
(f) dBase (*.dbf) data
(g) Lotus (.wk1), (.wk3), (.wk4) data
(h) DLM(Delimited data)
(i) Comma Separated Values(*.csv) data
(j) Tab Delimited (.txt) data

Standard data sources imported in SAS 6.12 for the Mac:

(a) DLM(Delimited file (*.*)
(b) Comma Separated Values (*.csv)
(c) Tab Delimited File (*.txt)

2) For SAS/INSIGHT end-users - may use the features within the SAS/INSIGHT
product to enter new data for analysis

27

• Converting other software data files into SAS data sets

The increasing use of the personal computer in everyday life for work means that more
and more data is already stored on computer media by a wide variety of different
applications. It’s important to be able to use this external data. SAS software provides a
number of ways to bring a variety of external data formats into analysis

. a) the Import/Export Wizard

or

b) SAS/ACCESS software for PC File Formats(ODBC)

• Using SPSS , BMDP , XPORT engines

28

6.1 DATALINES statement

Purpose: Use the DATALINES statement with an INPUT statement to read data that you
enter directly in the program(in-stream data), rather than data stored in an external
file.

DATALINES statement: DATALINES ;

Guidelines:

(1) Must be the last statement in the DATA step (that is, place the DATALINES statement
directly before the first data line.) When the compiler comes across the statement
DATALINES; then it reads subsequent lines as data rather than source code.

(2) Data lines cannot exceed 256 columns in the Windows environment.
Data lines cannot exceed 80 columns in the mainframe(OS/390) environment.

.
(3) Terminate the data with a lone semicolon. This lone semicolon (that is, the NULL

statement) is entered on one line.

SAS program entered in the Enhanced Editor window:

DATA Display_Sample ;
INPUT FNAME $ 1-8 SEX $ 11 AGE 13-14 HT 16-17 WT 20-22 ;

DATALINES;
PAUL M 27 72 140
JENNIFER F 28 64 135
RENEE F 35 54 128
MANUEL M 35 60 125
TONY M 32 68 130

;

29

6.2 INFILE Statement

Purpose: Identifies an external(raw data) file.

An INFILE statement is used to specify the source of data read by the INPUT statement. An
INFILE statement is required in any data step which uses an INPUT statement. However, the
INFILE statement is not needed when the data is entered ‘in-stream’ following the DATALINES
statement.

An INFILE statement identifies the file to be read, it must execute before the INPUT
statement and therefore must appear before the INPUT statement.

Sample INFILE statement in Windows

DATA EXTERNAL;
INFILE ‘c:\sasclass\project1.dat’ ;
INPUT FNAME $ 1-8 SEX $ 11 AGE 13-14 HT 16-17 WT 20-22 ;

Sample INFILE statement in OS/390 (mainframe)

DATA EXTERNAL ;
INFILE ‘wxyzabc.rawdata1’ ;
INPUT FNAME $ 1-8 SEX $ 11 AGE 13-14 HT 16-17 WT 20-22 ;

30

6.3 FILENAME statement and the INFILE statement used together

When the FILENAME and INFILE statement are used together, the fileref serves as a link
between FILENAME statement and the INFILE statement to locate the external file.
The FILENAME statement is executed before the DATA step begins.

Purpose: The FILENAME statement temporarily associates a valid SAS name with an
external (raw data) file.

Sample FILENAME with INFILE statement in Windows

FILENAME statement: FILENAME fileref ‘path for the raw data file’ host-option-list ;
| | |

(A) (B) (C)

(A) fileref a valid SAS name to ‘link to’ or to ‘point to’ an external file

(B) pathname drive, folder name(s), and filename for the raw data file

(C)host-option-list names external I/O statement options specific to Windows

FILENAME IN1 ‘c:\sasclass\project1.dat’ ;

DATA test;
INFILE IN1 ;
INPUT variable list ;

Sample FILENAME with INFILE statement in OS/390 (mainframe)

FILENAME statement: FILENAME fileref ‘aaaaiii.dsname’ host-options-list ;
| | |

(A) (B) (C)

(A) fileref a valid SAS name to ‘link to’ or to ‘point to’ an external file

(B) aaaaiii - user’s NIH/CIT registered account and initials on the OS/390
 dsname - external file name

(C) host-options-list names external I/O statement options specific to MVS

FILENAME IN1 ‘wxyzabc.project1’ ;

DATA test;
INFILE IN1 ;
INPUT variable list ;

31

7. Identify variable attributes

Before we can begin to write an INPUT statement to read the data from each record, we need
to assign to each variable...

• a variable name

• a character or numeric attribute

7.1 Numeric variable attributes

Standard numeric data contains...

• numbers with or without decimal point
• numbers written in scientific notation (example, 1.2E3)
• numbers with plus sign(+) or a minus sign (-)

Non-standard numeric data contains...

• dates
• numbers with embedded commas
• numbers with dollar sign
• numbers with percent sign

NOTE:

Variables should be defined as numeric when you expect to
perform mathematical computations on the values.

32

7.2 Character variable attributes

(1) Character variables contain data values consisting of a combination of letters, numbers
and special characters (like $, %, #, *).

(2) Contains numerals, letters, or special characters (such as $ or !).

(3) Character data values can range from 1 to 32,767 characters in length.
The default is 8.

Note:
LIST input places a restriction on character input values. Character input values cannot be
longer than 8 bytes(e.g. by default)

(4) Character data can contain embedded blanks.

(5) Sometimes data that consist solely of numerals make more sense as character data than as
numeric. For instance ZIP codes, social security numbers or telephone numbers make more
sense as character data.
Also...fields that contain values for grouping variables (such as 1=single, 2=married) are
usually declared character variable as they will not be used in mathematical computations.

33

Exercise 3

Identify the following data values as either numeric, character, or either.

(1) PEREZ, JOSE _________________

(2) A1 _________________

(3) 012-40-7777 _________________

(4) -2.7 _________________

(5) B- _________________

(6) 0.6 _________________

(7) SOUTH ORANGE, NJ _________________

(8) M. K. SMITH _________________

(9) +25 _________________

(10) 98% _________________

34

8. Read Data Lines

8.1 INPUT Statement

Purpose: The INPUT statement reads data lines and assigns names to the SAS variables that
correspond to the data fields.

We can use the INPUT statement to describe column-oriented data, list data, and formatted
data. These input styles can be mixed within a single INPUT statement.

8.2 Column Input: When data are arranged in columns or fixed fields, you can read them using
column input.
That is, read input values from specified columns and assigns them to the
corresponding SAS variable.

General Form: INPUT variable [$] start—end ;
| | | |

(A) (B) (C) (D)

(A) variable choose a variable name to represent the field

(B) $ identify a character variable with a dollar sign. SAS assumes variable is
numeric unless it is followed by a dollar sign.

(C) start the number of the first column containing the data values for the variable

(D) end the number of the last column containing the data values for the variable

35

Column INPUT is appropriate to read standard data.

(1) Standard numeric data values are values that contain only numbers, scientific notation,
decimal points and minus signs

(2) Values arranged in fixed column positions.

Sample program to illustrate fixed column positions:

DATA STATE;
INPUT STNAME $ 1-10 STCODE 11-12 AREA 13-15;
DATALINES;
NEW YORK 15032
MISSOURI 36175
N CAROLINA47009
;

36

8.2.1 How Character Values are Read with Column Input Style

• character variables can be up to 32K
• a blank field is read as missing and does not cause other fields to be read incorrectly
• character data can have embedded spaces
• spaces are not required between values
• you can skip unwanted variables

Sample: Column Input style statement

INPUT NAME $ 1-16 ;

/*Using the ($) attribute...notice that values are left-justified in the SAS data set and leading
blanks are trimmed*/

Data Values SAS Data Set

Manuel Perez Manuel Perez
 A.K. Smith A.K. Smith

8.2.2 How Numeric Values are Read with Column Input

• Numeric values can occur anywhere in the field
• The placement of a numeric value does not affect how it is stored
• Missing numeric numeric values can be represented as either a blank or a period in the input

data lines
• SAS displays missing numeric value as period in the output

Sample column input style statement

INPUT X 1-8 ;
Data Value SAS Data Set

24.0 24
24 24

24.00 24
2.4E1 24
. .
+24 24

37

8.2.3 Other Features of Column Input style

(1) Data fields can be read in any order.

INPUT THIRD 7-10 FIRST 1 SECOND 4-5 ;

column ruler 1234567890

0 35 3254
9 47 6456

(2) Skip unwanted variables.

INPUT THIRD 7-10 ;

(3) Data fields may be in adjacent columns.

INPUT FIRST 1 SECOND 2-3 THIRD 4-7 ;

column ruler 1234567

0353254
9476456

(4) Decimal points can be inserted in data values. The number following the column
specification gives the number of digits to the right of the decimal if the input value
does not contain an explicit decimal point.

INPUT FIRST 1 SECOND 2-3 THIRD 4-7 .2 ;

Observations, variables , and values displayed in the Output window

OBS FIRST SECOND THIRD

1 0 35 32.54
2 9 47 64.56

38

Exercise 4 (computer assisted)

Given the following data lines:

column 1 2
ruler 12345678901234567890

 JOHN M 18 1698
 MARY F 21 1724
 HAROLD M 17 1916
 JENNIFERF 19 1877

(1) Write a DATA step and create a SAS data set.

(2) Use column input style and write an INPUT statement to read the data lines shown above.
The four variables names are: NAME SEX AGE SCORE

(3) Submit the program in SAS

(4) Modify the INPUT statement to have one decimal place in SCORE?
(That is, you want SAS to read the value(s) 169.8, 172.4, 191.6, 187.7)

(5) Submit the program in SAS

39

Exercise 5 (computer assisted)

Given the following data lines:

column 1
ruler 123456789012345

 A001 12 201
 A002 14 403
 A003 17 611
 B001 19 312
 B002 11 599
 C001 10 461
 C002 15 519

(1) Write a DATA step and create a SAS data set.

(2) Use column input style and write an INPUT statement to read the data lines shown above.

The variable names and the (start-end columns) are:

ID 1-4 GROUP 1 X1 6 - 7 X2 9 -11

NOTE: the variable X2 should have 2 digits to the right of the decimal point.

40

8.3 List input (free formatted)

Scans the input data record for input values and assigns them to the
corresponding SAS variables. It’s important to keep in mind that list input
causes SAS to scan the input lines for values rather than read from specific
columns(e.g. fixed columns).

General Form: INPUT variable [$] ;
| |

(A) (B)

(A) variable choose a variable name to represent the field

(B) $ identify a character variable with a dollar sign. SAS assumes a variable
attribute is numeric unless it is followed by a dollar sign.

List input is appropriate to read when the standard character and numeric data values are
separated by a delimiter. Delimiters include spaces or tabs or commas.

The process is...
a) the first field is read until a blank space is encountered - the blank space indicates the end of

the field
b) the data value is assigned for the first variable

...and so forth.

Guidelines:

(1) Data values must be read in the order in which they appear.

(2) Any missing data must be indicated with a period.

(3) Character data, if present must be simple:
• By default, no embedded spaces
• By default, no values greater than 8 characters in length
 (values that exceed eight characters are truncated to eight characters)

(4) Numeric data, by default, cannot change placement of the decimal point

(5) No skipping over unwanted values

(6) If data contains dates or other values which need special treatment, then list input may
not be appropriate.

41

Sample: List Input style

Reminder!
The process for list input is...the first field is read until a blank space is encountered. The blank
space indicates the end of the field, and the data value is assigned for the first variable...and so
forth until each record is read.

DATA FITNESS;
INPUT NAME $ AGE WEIGHT ;

DATALINES;
SMITH 40 178
WHITE 38 150
KANE . 160
MORELLA 29 210.2
;

Observations, variables, and values displayed in the Output window

OBS NAME AGE WEIGHT

1 SMITH 40 178.0
2 WHITE 38 150.0
3 KANE . 160.0
4 MORELLA 29 210.2

By default SAS displays a missing value for a numeric variable as a single period (.) and a missing
character value as a blank space

42

Exercise 6

100 M 23 416
2 F 19 640
1726 F 33 917
26 M 40 596

Given the data lines shown above write an INPUT statement which uses list input style to read
the data

The four variables are: ID SEX AGE VAR1

Exercise 7

Will the following INPUT statement

INPUT NAME $ AGE HT WT ;

read each of the data lines shown below?

(1) CHARLIE 23 73 206

(2) MARY ANN 43 61 131

(3) CHRISTOPHER 29 67 183

(4) CRAWFORD 19 62 166

(5) ROBERT 67 192

(6) BETSY 29 60 119

(7) KEVIN 31 65

(8) CATHERINE 22 121

43

Exercise 8 (computer assisted)

Enter the following SAS program in the enhanced editor window and create a SAS data set

DATA Sample_List_Input ;
INPUT WEIGHT HEIGHT GENDER $;

DATALINES;
155 68 M
98 60 F
280 75 M
130 63 F
;

44

8.4 Formatted Input style and Column Pointer Controls

Formatted input uses column pointers to position the input pointer on a specified column.

Formatted input style reads values with specified informats and assigns them to the
corresponding SAS variables

Formatted input style is the only style of input that can read both standard and nonstandard
data.

Nonstandard numeric data values includes numbers with embedded commas, dollar
signs, percent signs, date and time values. Other examples include data in fractions, integer
binary and real binary, and hexadecimal forms.

column
General Form: INPUT pointer control variable informat ;

| | |
(A) (B) (C)

(A) @n is an absolute pointer that moves the input pointer to a specific column number

(B) variable choose a variable name to represent the field

(C) informat tells SAS how to read the data value and how many columns to read. SAS
defined informats always include or end with a period. Prefix an informat with
a $ sign when a character variable is identified.

There are three informat types: character, numeric, and date.

45

8.4.1 SAS informats - Numeric

numeric
informat

w. w is the total width or the number of columns to read

or

w.d w is the total width or the number of columns to read
d is the number of decimal places

The period in any informat (e.g. the informat w. or w.d) is very important.

3. Reads 3 columns of numeric data
4.2 Reads 4 columns of numeric data and inserts a decimal point 2 digits from the

right

8.4.1.1 COMMAw.d Informat

Reads numeric values and removes commas, blanks, dollar signs, percent signs, dashes, and
right parentheses from the input data.

 For instance ...

 Given the data line: $1,000,000

 Input x comma10. ;

Result: 1000000

 SAS reads 10 columns and strips out non-numeric characters

46

8.4.2 Formatted Input Style with implied decimal

To insert a decimal point, use the w.d informat. If there is a decimal point in the input
value, it takes precedence over that provided by the w.d informat.

8.4.3 SAS informats - Character

character
informat

$w. w is the total width or the number of columns to read
This particular character informat ($w.) trims leading blanks

$6. Reads 6 columns of character data and trims leading and trailing blanks

8.4.4 Column input versus formatted input style

Column: INPUT FNAME $ 4-18 AGE 23-24 ;
or
Formatted: INPUT @4 FNAME $15. @23 AGE 2. ;

47

SAS informat
used

Raw data
entered

What SAS does! SAS data set
value displayed

3. 125 Reads 3 columns of
numeric data

125

4.2 3.15 Reads 4 columns of
numeric data
containing a decimal
point

3.15

4.2 315 Reads 4 columns of
numeric data and
inserts a decimal
point 2 digits from
the right

3.15

$6. MARTIN Reads 6 columns of
character data

MARTIN

$6. SUE Reads 6 columns of
character data and
strips off leading
blanks

SUE

COMMA9. $1,250.21 Reads 9 columns of
numeric data and
strips out non
numeric characters

1250.21

$CHAR15.

COMMA10.

PERCENT5.

SAS Institute
 SAS Institute

$1,000,001

5%
(20%)

Reads 15 columns of
character data.
Does not trim
leading blanks.

Read 10 columns,
strips commas,and $

Converts percentage
to numbers

SAS Institute
 SAS Institute

1000001

0.05
-0.2

48

8.4.5 Repeated and same width fields

A important point to remember before proceeding with this example is...
When you use column input or formatted input, the input pointer rests on the column after the
last column read.

Given the following column input statement...

INPUT ID $ 1-9 WK1 11-12 WK2 14-15 WK3 17-18 WK4 20-21 WK5 23-24 WK6 26-27 ;

Note: In this example we want you to assume that columns 10, 13, 16, 19, 22, and 25 in the data
lines are blank fields. Therefore after SAS reads columns 1-9, SAS’s internal pointer
automatically goes to column 10 and reads columns 10,11, 12, ...columns 13, 14, 15,...
columns 16, 17, 18, etc.

Another point we want to illustrate is that one may use the following abbreviated formatted
variable list (WK1-WK6) and read the same data line(s).

For instance...

INPUT ID $ 1-9 (WK1-WK6) (3.) ;

or

INPUT ID $ 1-9 @10(WK1-WK6) (3.) ;

8.4.6 +n column pointer

+n moves the pointer n spaces.

For this particular example we will assume that columns 13, 16, 19, 22, 25, and 28 in the data
lines do not have a blank. That is, we will presume there is some number or character in
columns 13, 16, 19, 22, 25, and 28 that we do not want SAS to read.

With the +1 column pointer designated, one space is skipped after reading each of the
variables WK1-WK6.

INPUT ID $9. @11(WK1-WK6) (2. +1) ;
|
reads a field width of 2 and moves the
column pointer over 1 space to the right

49

Exercise 9 (computer assisted)

Given the following raw data...

Social Security Annual Age Race
Number Salary
__
123-87-4414 28,000 35 W
646-23-9182 29,500 37 B
012-43-7652 35,100 40 W
018-45-1357 26,500 31 W

Write a SAS program and create a SAS data set .

When you code the INPUT statement use the comma11. informat to read the Social
Security Number field and the comma6. informat to read the Annual Salary field.
Also use the column pointer control to read the Annual Salary field.

For instance..

INPUT Social_Security_no comma11. @14 Annual_Salary comma6. ;

Write a PROC PRINT step and use a FORMAT statement to display the SAS data set
with SAS defined formats.

For instance...

PROC PRINT;
FORMAT Social_Security_no ssn11. Annual_Salary comma6. ;

50

Exercise 10

(1) Given this column INPUT statement

INPUT IDNUM $ 1-8 SEQ1 11-13 SEQ2 15-17 SEQ3 19-21 SEQ4 23-25 ;

Use formatted input style and rewrite this INPUT statement in two ways.
 (Do not assume that columns 14, 18, 22, 26 are blank)

INPUT__

INPUT__

51

(2) column 1
 ruler 12345678901234

 ACB 134.1 101
 ABC 13.2 135
 CBA 15 212

Field Dictionary

Variable name Field location Field width Variable type

STATEID 1-3 3 Character

MILES 5-9 5 Numeric

TONS 11-13 3 Numeric

Complete the following INPUT statements:

Column INPUT style

INPUT ___

Formatted INPUT style

INPUT ___

Formatted input statement with +n column pointer

INPUT ___

52

(3) column 1 2
 ruler 1234567890123456789012345

 00 4890 6.13
 01 5624 2330
 02 24.1 .01

Field Dictionary

Variable name Field location Field width Variable type

CODE 1-2 2 Character

X 12-15 4 Numeric

Y 20-23 4 Numeric

Write two different input statements to read this data using formatted INPUT style.

INPUT __

INPUT __

53

8.5 Read more than one data line per observation

To read data with more than one line per observation, use the #n line pointer control.

For example, this INPUT statement

INPUT FNAME $ 1-8 SEX $ 11 AGE 13-14 HT 16-17 WT 20-22 #2 PHONE $ 11-22 ;

reads the following data lines

PAUL M 27 72 140
205-542-6898

JENNIFER F 28 64 135
303-986-2425

MARY F 35 54 128
212-241-6304

Observations, variables, and values displayed in the SAS Output window

OBS FNAME SEX AGE HT WT PHONE

1 PAUL M 27 72 140 205-542-6898
2 JENNIFER F 28 64 135 303-986-2425
3 MARY F 35 54 128 212-241-6304

Now suppose we have two data lines per observation, but we are only interested in data from
the first line. We still use #2 to indicate that there are a total of two data lines per
observation. For instance, in the data lines above, if we want to read only FNAME, SEX,
AGE, and HEIGHT, the following INPUT statement would read the data:

INPUT FNAME $ 1-8 SEX $ 11 AGE 13-14 HT 16-17 #2 ;

Observations, variables, and values displayed in the SAS output window

OBS FNAME SEX AGE HT

1 PAUL M 27 72
2 JENNIFER F 28 64
3 MARY F 35 54

54

8.6 Create more than one observation from a single data line

The double trailing at sign (@@) tells SAS to hold the current data line through
multiple executions of the DATA step. It works like a stop sign telling SAS , “STOP,
hold that line of raw data.”

Note:
By default the internal SAS pointer moves to the next record when there is no more
data to be read on a line.

Suppose we want to read a sequence of 3 test scores per individual.

DATA TESTDATA ;
 INPUT TEST1 TEST2 TEST3 @@ ;

DATALINES;
56 72 46 84 96 89 95 90 75
80 70 79 100 98 87
;

PROC PRINT ;
RUN;

Observations, variables, and values displayed in the Output window

OBS TEST1 TEST2 TEST3

1 56 72 46
2 84 96 89
3 95 90 75
4 80 70 79
5 100 98 87

55

9. Read dates with SAS defined informats

Dates can be tricky to work with. Some months have 30 days, some 31 days, some 28, and
then leap years. SAS dates simplifies all of this.

A SAS date variable is the number of days since January 1, 1960.

Given dates are...

Jan 1, 1959 Jan 1, 1960 Jan 1, 1961 Jan 1, 2001

and the corresponding SAS date values are...

-365 days 0 days +366 days +14976 days

To let SAS know that a variable represents a date, use formatted input style and use
a date informat following the variable name in the input statement.

SAS has a variety of date informats for reading dates in different forms. All of these
informats convert your data to a number equal to the number of days since Jan. 1, 1960.

SAS defined
date informats

Read date values
in the form of... Informats used...

 Reads...

DATEw. ddmmmyy
ddmmmyyyy

DATE7.
DATE9.
DATE11.

15FEB92
15FEB1992
15-FEB-1992

DDMMYYw. ddmmyy

ddmmyyyy

DDMMYY6.
DDMMYY8.
DDMMYY8.

150292
15/02/92
15021992

MMDDYYw. mmddyy

mmddyyyy

MMDDYY6.
MMDDYY8.
MMDDYY8.

021592
02 15 92
02151992

YYMMDDw. yymmdd

yyyymmdd

YYMMDD6.
YYMMDD8.
YYMMDD8.

920215
92/02/15
19920215

56

Exercise 11 - Read dates in SAS

Associate each of the following with the appropriate SAS date informat:

Date value SAS Date informat

05MAR1947 _____________

21/05/47 _____________

22 05 47 _____________

10/21/89 _____________

2-16-90 _____________

7FEB90 _____________

57

Exercise 12 (computer-assisted)

(1) Correct the following INPUT statement to read the data lines corresponding to the variables
GRP and SCORE when you have 4 subjects in a placebo group and 4 in a drug group.

DATA PLACEBO ;
INPUT GRP $ SCORE ;

DATALINES;
P 77 P 76 P 72 P 68
D 81 D 82 D 84 D 82
;

(2) Re-structure the data lines(shown above) so that the following INPUT statement will read the
data lines.

DATA PLACEBO ;
INPUT GRP $ SCORE ;

DATALINES;

;

58

10. FORMAT Statement

Purpose: Use a FORMAT statement to tell SAS to associate formats with variables.

General Form:

FORMAT variables format ;
| |

(A) (B)

(A) variables names the variable(s) to assign a format.

(B) format the format assigned to the variable.
Prefix a format with a $ sign when a character variable is
identified.

The FORMAT statement can go in either the DATA steps or the PROC steps.

If the FORMAT statement is used in the DATA step, format association is stored with
the SAS data set for the duration of that SAS session.

If the FORMAT statement is used in the PROC step, formats are assigned to the variables
— affecting only the results from that procedure. Subsequent procedures do not use the
format. Formats used in the PROC step override any formats assigned to variables in
the DATA step.

Sample format statements...

(1) FORMAT TOTALS 7.2 ;

(2) FORMAT AMTSALES DOLLAR9.2 CREDIT COMMA8.2 ;

(3) FORMAT BIRTHDAY TESTDATE MMDDYY8. ;

59

11. Display variable values with SAS defined formats

SAS defined formats are used to display ‘real’ values in the SAS output.

1) w.d Writes numeric values in an output field(w positions wide), and (d positions to the
right of the decimal point). The value of w accounts
for the entire width(that is, the integer portion, the decimal point
and the number of positions to the right of the decimal point).

If you do not specify a d value as part of the format SAS writes the value without a decimal
point.

Value w.d Result

3702.51 7. 3703

3702.51 7.2 3702.51

An example of a Format statement is Format NUM1 7.2 ;

2) DOLLARw.d Writes numeric values with dollar sign, commas, and a decimal point. The
range(2-32) of w represents the total width of the output field. Make w wide enough to write
the numeric values, dollar sign, commas, and a period that separates the decimal portion. The
range(0-31) of d optionally specifies the number of digits to the right of the decimal point. If d is
0, DOLLARw.d format does not write a decimal. If d is 2, DOLLARw.d format writes a decimal
point and 2 decimal digits.

Value DOLLARw.d Result

3702.51 DOLLAR9.2 $3,702.51

3702.51 DOLLAR6.0 $3,703

3702.51 DOLLAR6. $3,703

An example of a Format statement: Format AMT dollar9.2 ;

60

3) COMMAw.d Does exactly the same as DOLLARw.d format except that no dollar
sign is displayed. Make w wide enough to write the numeric values, commas,
and the optional decimal point.

value COMMAw.d Result

3702.21 COMMA8.2 3,702.21

An example of a Format statement: Format TOTAL comma8.2 ;

4) DATEw. Display SAS date values in the form ddmmmyy, where dd is the day, mmm is
the first three letters of the month name, and yy or yyyy is the year.

value DATEw. Result

10072 DATE7. 30JUL87

10072 DATE9. 30JUL1987

An example of a Format statement: Format DOB date9. ;

5) MMDDYYw. Display a SAS date value in the form mmddyy or mmddyyyy, where mm, dd,
yy are integers representing the month, day, and (two- or four-digit)year.

value MMDDYYw. Result

10072 MMDDYY8. 07/30/87
MMDDYY10. 07/30/1987

An example of a Format statement: Format NEWDATE mmddyy10. ;

61

12. LABEL statement: To assigns descriptive labels to variable names

Long column labels: Maximum length for column labels is 256.

for instance...

DATA long_label ;
INPUT annual_salary comma6. ;

DATALINES;
26,000
45,000
70,000
;

PROC PRINT Data = long_label Label ; /* Label option is necessary to display labels in Output*/
 Var annual_salary ;
 Label annual_salary = “Don’t you wish this was your salary because airline

folks make so much more money and they get lots of benefits. But of course, you’d have
to be out of town a lot, so that is a real drawback to this job”;

Format annual_salary dollar7. ;
RUN;

62

Exercise 13 (computer-assisted)

1. Add a FORMAT statement to the DATA step shown below
(a) assign the date format DATEw. to the variable DAY
and
(b) assign a format w.d to the variable TEMP.

DATA CITIES;
INPUT CITYNAME $ TEMP @16 DAY MMDDYY8. ;

DATALINES;
Austin 74.8 03/15/92
Chicago 47.34 03/15/92
Miami 80.3 03/16/92
;

2. Rewrite the FORMAT statement in (1) so that the values of the variable DAY are displayed with
the date format mm/dd/yy

3. In the program shown below, write a FORMAT statement in the DATA step so that the
values of the variable UNITPRICE is displayed in each PROC output with dollar signs and
commas, and the values of the variable AMOUNT is displayed with commas.

DATA ITEMS;
INPUT ITEM $ UNITPRICE AMOUNT ;

DATALINES;
UX123 999.29 5000
UY500 1200.00 45000
UZ550 1499.99 45500
;

PROC PRINT;
RUN;

4. Where would you place the FORMAT statement if it is to apply to the PROC PRINT only?

63

MODULE 3: Temporary and permanent SAS data sets

• DATA step logic

• PROC step logic

• Interpret messages in the SAS log

• Create temporary SAS data set

• Create permanent SAS data set

• Examine Proc Contents procedure

13. DATA step logic

An overview of the SAS DATA step may be a bit technical, but an understanding of
how SAS works will help you to fully appreciate how the SAS System and the SAS
DATA step in particular really works.

A DATA step is processed in two phases...when you hit ‘SUBMIT’.

• compile phase

• execute phase

65

13.1 DATA Step - Compile Phase

What happens during the compilation phase?

(1) Checks syntax.

• missing or misspelled keywords
• invalid variable names
• missing or invalid punctuation
• invalid options

Most syntax errors prevent further processing of the DATA step.

Once a syntax error is detected, an ERROR message is written to the SAS log,
and the SAS Step cannot be executed. However, the rest of the code is checked
for other syntax errors.

(2) User errors are not detected. These types of errors are more dangerous because a
 program can compile and execute successfully, but generate incorrect results.
 Careful examination of the output is often the only way to detect user errors (logic

errors).

(3) SAS software and operating system set up needed resources.

(a) Where is the data coming from?

(b) Opens the working areas.

• Input buffer is a temporary area that holds each data line as it is read in.

• Program Data Vector is a temporary area which defines a slot for each
variable in the INPUT statement(or when a SAS data set is read)and all new
variables created in the DATA step.
The program data vector contains two automatic variables that can be used for
processing but are NOT written to the data set as part of an observation.

• _N_ counts the number of times that the DATA step has begun to execute
• _ERROR_ signals the occurrence of an error caused by the data during
 execution.

(c) Prepares descriptor portion of the SAS data set.

(4) Each DATA step or PROC step must compile successfully before each is executed.

66

set up resources...

Data Line: SAS Program:

PAUL M 27 72 140 INPUT FNAME $ 1-8 SEX $ 11
JENNIFER F 28 64 135 AGE 13-14 HT 16-17
RENEE F 35 54 128 WT 20-22 ;
MANUEL M 35 60 125
TONY M 32 68 130

Input Buffer:
1 2 3

 123456789012345678901234567890123456

Program Data Vector:

N _ERROR_ FNAME SEX AGE HT WT

SAS Data Set:

descriptor portion......>
• data set name
• date/time created
• variable names
• number of observations and variables
• informats and formats

data value portion......>
PAUL M 27 72 140
JENNIFER F 28 64 135
RENEE F 35 54 128
MANUEL M 35 60 125
TONY M 32 68 130

67

13.2 DATA Step - Execute phase

After the DATA step is compiled, it is ready for execution. During the execution phase, the
data portion of the data is created. The data portion contains the data values.

What happens during execute phase?

1. At the beginning of the execution phase, the value of _N_ is 1. Because there is no data
errors, the value of the _ERROR_ is 0.
Each variable in the Program Data Vector (PDV) is initialized to missing.
Missing numeric values are represented by a period and missing character values are
represented by a blank.

Program Data Vector

N _ERROR_ FNAME SEX AGE HT WT

 1 0 • • •

2. INPUT statement reads the current data line and substitutes the actual data values
for the missing values.

These data values are kept in the Program Data Vector until they are transferred to
the SAS data set.

 1 0 PAUL M 27 72 140

3. SAS then executes each statement in the DATA step for the current observation.

4. By default, the values in the Program Data Vector are written as an observation to
the SAS data set.

5. Steps 1 to 4 are repeated for each observation(one observation at a time).

That means, SAS takes the first observation and “runs” all the way through the DATA
step (e.g. line by line of code) before looping back to pick up the second data line, and so
forth

6. Execution of the DATA step stops when there are no more data lines to process.

7. SAS proceeds to the next step in the SAS program.

68

14.PROC Step Logic

PROC step invokes a pre-written program called a SAS procedure (a PROC) and begins
with a PROC statement.

PROC step automatically repeats the following functions for each observation in the
data set.

• identifies the SAS data set

• reads an observation

• processes the observation

• stores the processed information such as the descriptive statistics, the
produced listings, produced tables, produced analysis, produced reports

• many PROCs do create output SAS data sets

General form of the PROC statement: PROC procname options ;
| | |

(A) (B) (C)

(A) PROC SAS keyword

(B) procname names the procedure to operate on the SAS data set

(C) options actions applicable to processing a procedure

The PROC statement is most frequently followed by procedure information statements.

69

Sample PROC steps:

PROC PRINT DATA = sasdatasetname ;
VAR FNAME AGE ;
TITLE ‘PROC Print output ’ ;

RUN;

PROC SORT DATA = sasdatasetname ;
BY variables ; /* a required statement in the PROC SORT procedure */

RUN;

PROC MEANS DATA = sasdatasetname ;
VAR variables ;

RUN;

PROC FREQ DATA = sasdatasetname ;
TABLES variable(s) list ;
TITLE1 ‘ This ia a title ’ ;
TITLE2 “ Here is another title ” ;
TITLE3 ‘ Here’’s another title ’ ;

RUN;

The BY statement is optional in PROC(s) other than PROC SORT. If you do use a BY
statement in other procedures, it tells SAS to perform a separate analysis for each
combination of values of the BY variable(s) rather than treating all observations as one
group. If your observations are not already sorted, then use PROC SORT to do so.

70

15. Interpret Messages in the SAS Log

When programming errors are made, such as misspelling SAS keywords, forgetting
semicolons, or entering invalid data, the SAS log will display:

• the word NOTE, WARNING, or ERROR

• the location of the error

• a message explaining the error at the end of the SAS step.

1. Variable not found

Sample Log:

 1 DATA ERR1 ;
 2 INPUT IDCODE $ AGE ;
 3 DATALINES;

 NOTE: The data set WORK.ERR1 has 2 observations and 2 variables.
 NOTE: The DATA statement used 0.04 CPU seconds.

 6 ;
 7 PROC PRINT ;
 8 VAR ID AGE ;
 ERROR: Variable ID not found.
 NOTE: The SAS System stopped processing this step because of
 errors.
 NOTE: The PROCEDURE PRINT used 0.01 CPU seconds.

 ERROR: Errors printed on page 1.

 NOTE: The SAS session used 0.22 CPU seconds.
 NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC
 27512-8000

71

2. Invalid data error

If SAS detects a data error during execution phase, SAS will:

• Displays to the SAS log a note describing the error

• List the values stored in the input buffer

• List the values stored in the program data vector, including _N_, the number of the data
 line, and _ERROR_, is assigned 1 when an error is encountered

• Set the invalid data to missing

• Continue processing with the next data line

Sample Log:

 1 DATA ERR2 ;
 2 INPUT IDCODE $ AGE NUM1 ;
 3 DATALINES;

 NOTE: Invalid data for NUM1 in line 5 14-18.
 RULE: ----+----1----+----2----+----3----+----4----+----5---
 5 A02 27 6.5.9
 IDCODE=A02 AGE=27 NUM1=. _ERROR_=1 _N_=2
 NOTE: The data set WORK.ERR2 has 2 observations and 3 variables.
 NOTE: The DATA statement used 0.06 CPU seconds.

 6 ;
 7
 8 PROC PRINT ;
 NOTE: The PROCEDURE PRINT printed page 1.

 NOTE: The PROCEDURE PRINT used 0.02 CPU seconds.

 NOTE: The SAS session used 0.24 CPU seconds.
 NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC
 27512-8000

Sample Output:
 OBS IDCODE AGE NUM1

 1 A08 34 6.5
 2 A02 27 .

72

16. Temporary SAS Library or Permanent SAS Library

Before we create a new SAS data set, we need to consider which library we will use to
store it. Do we create a WORK library or a permanent SAS library?

16.1 Create a temporary SAS data set in the WORK library

Limitation: A temporary SAS data set exists only for the current SAS session.

Temporary data sets have an important limitation imposed on them. Temporary data
sets are deleted at the end of the SAS batch job or interactive session. However, they can
be used any number of times within the batch or interactive session.

When the first-level name is omitted, a temporary SAS data set is created and held in a
special work space that is assigned the default libref WORK .

73

16.2 By definition a SAS data set has a two-level name.

General Form: DATA libref • sasdatasetname ;
| | |

(A) (B) (C)

(A) libref referred to as the first-level name(library reference name)

By definiton the first-level name is NOT actually part of the SAS data set name proper, but a
reference to a SAS library that your operating system associates with a storage location. The libref is
not a fixed, “real” name like a filename, but only an alias that is linked with the SAS library for the
SAS session.

(B) • the two-level name is always separated by a period.

(C) second-level associate a name for the SAS data set(that is, the member name in the SAS
library

DATA statement(s) Note in SAS Log

DATA ; WORK.DATA1

DATA TEMPORARY ; WORK.TEMPORARY

DATA TEST1 TEST2 ; WORK.TEST1
WORK.TEST2

Observe that when you create a temporary SAS data set, a note is displayed in the SAS
Log similar to the following:

NOTE: The data set WORK.TEST1 has 5 observations and 4 variables.

74

17. Create Permanent SAS Data Sets

Permanent SAS data sets must specify both level names.

Why create permanent SAS data sets?

1) Probably the most compelling reason to create and use permanent SAS data sets is
 speed. It is safe to say that typical SAS programs use most of the machine resources

in the DATA step.

2) If you plan to be running many different analyses on a data set that will not be
 changing often, it is a good idea to make the SAS data set permanent for the
 duration of the analyses.

3) SAS data sets are also a good way to transfer data to other users.

4) Once we have created a permanent SAS data set, it is available for processing in subsequent
SAS session.

Question: How is the libref or library reference name created for a permanent SAS Library?

Answer: You may use either the “point-and-click” method through the SAS system’s pop-up
window, or you may actually code a LIBNAME statement in your SAS program.

Both methods illustrated during the class session.

75

17.1 LIBNAME Statement

Purpose: A LIBNAME statement associates a SAS libref with a SAS data library.

LIBNAME Statement: LIBNAME libref ‘path-name’ host-options ;
| | |

(A) (B) (C)

(A) libref referred to as the first-level name(e.g. a library reference name).

• libref is 1 to 8 characters long, begins with a letter or underscore; and contains only letters,
numbers, and underscores.

This is a logical name or a temporary name that you associate with the physical location
during a SAS session.

Strictly speaking the first-level is not actually part of the SAS data set name. It is simply a reference
to a SAS library that your operating system associates with a storage location. In other words
the libref is not a fixed, “real” name, but only an alias , that is linked with the SAS library
where the SAS data set is physically stored.

(B) path-name the physical name that fully identifies the directories on the operating system
that contains the SAS data library

“drive:\directory\sub-directories”

(path-name may be enclosed in either single or double quotes)

(C) host-options host or operating environment specific details such as file and
processing attributes.

76

17.2 Illustrate a couple of ways to create permanent SAS data set

Sample with the LIBNAME statement

LIBNAME IN1 “c:\class\samples” ; /*path-name may be enclosed in either single or double quotes*/

DATA IN1.Display_Sample ;
 INPUT FNAME $ 1-8 SEX $ 11 AGE 13-14 HT 16-17 WT 20-22 ;
DATALINES;
PAUL M 27 72 140
JENNIFER F 28 64 135
RENEE F 35 54 128
MANUEL M 35 60 125
TONY M 32 68 130
;

Sample without the LIBNAME statement

DATA “c:\class\samples\display_sample” ; /*path-name may be enclosed in either single or double quotes*/

 INPUT FNAME $ 1-8 SEX $ 11 AGE 13-14 HT 16-17 WT 20-22 ;
DATALINES;
PAUL M 27 72 140
JENNIFER F 28 64 135
RENEE F 35 54 128
MANUEL M 35 60 125
TONY M 32 68 130
;

Sample under OS/390 operating system (mainframe):

//ABC JOB (XYZ3,,A),NAME
// JCLLIB ORDER=ZABCRUN.PROCLIB
// EXEC SAS
//SYSIN DD *

LIBNAME OUT1 'XYZ3ABC.SAMPLES' DISP=(NEW,CATLG)
UNIT=FILE SPACE=(TRK,(1,1)) ;

DATA OUT1.Display_Sample ;
INPUT FNAME $ 1-8 SEX $ 11 AGE 13-14 HT 16-17 WT 20-22 ;
DATALINES;
PAUL M 27 72 140
JENNIFER F 28 64 135
RENEE F 35 54 128
MANUEL M 35 60 125
TONY M 32 68 130
;

77

17.3 Sample to access permanent SAS data set in a PROCedure

Sample under Windows:

LIBNAME IN1 “c:\class\samples” ; /* may use either double or single quotes*/

PROC FREQ DATA = IN1.Display_Sample ;
TABLE SEX ;

RUN;

or without the LIBNAME statement

PROC FREQ DATA = ‘c:\class\samples\display_sample’ ;
TABLE SEX ;

RUN;

Sample under OS/390 (mainframe)

LIBNAME IN1 ‘XYZ3ABC.SAMPLES’ ;

PROC FREQ DATA = IN1.Display_Sample ;
TABLE SEX ;

78

18. Proc Contents procedure

Whenever one creates a permanent SAS data set, some form of documentation should be
prepared. The documentation should provide sufficient means for someone to determine
what information the SAS Library contains and how to get it. PROC CONTENTS has some
nice ways to supplement hand-prepared documentation.

For instance...to display the contents of a permanent SAS data set called Display_Sample

LIBNAME IN1 “c:\class\samples” ;

PROC CONTENTS DATA = IN1.Display_Sample ;
RUN;

or without the LIBNAME statement

PROC CONTENTS DATA = ‘c:\class\samples\display_sample’ ;
RUN;

Note for OS/390 (mainframe) users:

If you do not remember the second-level name of a permanent SAS data set on the OS/390
operating system(mainframe) you may used a special SAS name _ALL_ to reference
the SAS library. Although the special name _ALL_ may be used in any operating environment;
it is more commonly used on OS/390 (mainframe).

For instance...

LIBNAME IN1 ‘XYZ3ABC.SAMPLES’ ;

PROC CONTENTS DATA = IN1._ALL_ ;

The PROC CONTENTS procedure will display the names and content of all the SAS data
sets identified in the SAS library.

79

Exercise 14 (computer-assisted)

Given the following data lines, create a permanent SAS data set and a temporary SAS data
set. Run PROC CONTENTS on the permanent SAS data set and PROC PRINT on the
temporary SAS data set.

Column 1 2
Ruler 12345678901234567890

 TUESDAY 400 200 16
 MONDAY 516 311 19
 THURSDAY 319 419 101
 FRIDAY 666 111 23

Exercise 15 (computer assisted)

Given the following set of data:

ID RACE SBP DBP HR

101 W 130 80 60
102 B 140 90 70
103 W 120 70 64
104 W 150 90 76
105 B 124 86 72

(Note: SBP is systolic blood pressure, DBP is diastolic blood pressure, and HR is heart rate.)

1) Use the data(above) and create a SAS data set.

2) Use the PROC SORT procedure to sort the data in increasing order of SBP
PROC SORT;

BY SBP ;

3) Use the PROC PRINT procedure to display the SAS data set
PROC PRINT ;

3a) Use the VAR statement in the PROC PRINT procedure to exclude the variable HR
VAR ID RACE SBP DBP ;

3b) Use a Title statement in the PROC PRINT procedure
Title ‘Race and Hemodynamic Variables’ ;

Other Base SAS software
features that may be helpful
to you...

SAS and year 2000

How is SAS Institute handling the date transition between the end of the 20th century and the
beginning of the 21st century?

All versions of the SAS System represent dates from 1582 A.D. to 20,000 A.D. correctly.
Leap years, century, and fourth-century adjustments are made automatically. Leap seconds are
ignored, and the SAS System does not adjust for daylight savings time.

The SAS System is prepared to handle dates in the 21st century. The best situation is to have
dates with four-digit years in both your external data sources and your SAS programs.

• If the dates in your external data sources or your SAS program contain four-digit years,
then the SAS software system will accept those four-digit years without difficulty as
long as you choose the appropriate SAS date informat

• If the dates in your external data sources or SAS programs contain two-digit years, the
SAS System assumes by default that two-digit years represent dates in the 20th century,
(that is, from 1900 to 1999). This 100-year span is controlled by the YEARCUTOFF =
system option. The default values for the YEARCUTOFF= system option are show on the
following page.

For instance...

datew. informat reads dates defined in the form ddmmmyyyy as well as ddmmmyy

yymmddw. informat reads dates defined in the form yyyymmdd as well as yymmdd

ddmmyyw. informat reads dates defined in the form ddmmyyyy as well as ddmmyy

mmddyyw. informat reads dates defined in the form mmddyyyy as well as mmddyy

(...continued on next page)

The YEARCUTOFF=option is used by SAS software to assign a century prefix to two digit years
used in SAS programs and input data.

How does the YEARCUTOFF=option work?

The YEARCUTOFF=option specifies the first year of a 100 year window in which all 2-digit years
are assumed to be. For example, if the YEARCUTOFF= option is set to 1920, all 2-digit years are
assumed to be in the period 1920 through 2019. This means that two-digit years
from 20-99 will be assigned a century prefix of ‘19’ and all 2 digit years from 00-19 will have a century
prefix of ‘20’.

What types of date values are, and are not, affected by the YEARCUTOFF=option?

The YEARCUTOFF=option affects the interpretation of two digit years in the following cases:
• Reading date values from external files
• Specifying dates or year values in SAS functions
• Specifying SAS date literals

The YEARCUTOFF=option has no affect in the following cases:
• Processing dates with 4 digit years
• Processing dates already stored as SAS date

values(the number of days since January 1, 1960)
• Displaying dates with SAS date formats

What are the current YEARCUTOFF = system option default values at NIH?

WIN95/98/NT
...Version 6 releases(6.10 and higher) default is 1900
...Version 8 default is 1920

Mac
...Version 6 releases(6.10 and higher) default is 1900

OS/390 operating system (mainframe)
...Version 6.09 default is 1920
...Version 8(8.1 and higher) default is 1920

SAS reads a file with hierarchical data

Raw data file can be hierarchical in structure, consisting of a header record and one or more detail
records. Typically, each record contains a filed that identifies the record type.

Using the single trailing @ sign to read specified field(s) from an hierarchial file
A single trailing @ sign, placed at the end of an INPUT statement means “hold the line” for
the current execution of the DATA step. That is, the pointer will not be moved to the next
record.

Sample raw data:

H IDNUM1 TONY 07JAN1991
T 21JAN1992
T 05FEB1991
H IDNUM2 RENEE 10JUN1994
T 24JUN1991
T 29JUL1998
T 13AUG1993

Notice that there are two INPUT statements. The first reads the character variable TYPE
and then ends with a trailing @. The trailing @ holds each line of data while the IF statement
tests it. If a record does not have a value ‘H’ for the variable TYPE, then the second
INPUT statement never executes. Instead SAS returns to the beginning of the DATA
step to process the next record, and does not add the unwanted observation to the
TEMP5 data set.

Sample program:

DATA TEMP5 ;
 INFILE ‘c:\sasclass\project2.dat’ ;
 INPUT TYPE $1. @ ;
 IF TYPE = 'H' THEN INPUT @14 FNAME $6.
 @21 TESTDATE DATE9. ;
 ELSE DELETE ; /* the DELETE statement is a topic discussed in SAS Programming Fundamentals II */

PROC PRINT;
 FORMAT TESTDATE MMDDYY9. ;
RUN;

Sample Output:

Observations, variables, and values displayed in the Output window

OBS TYPE FNAME TESTDATE

1 H TONY 01/07/91
2 H RENEE 06/10/94

Modified list input style may be used to read values which contain embedded blanks and
nonstandard values. Modified list input style uses two format modifiers,
1) :
2) &

1. The colon : format modifier

The colon : format modifier enables you to read nonstandard data values and character values
longer than eight characters without embedded blanks

The colon : format modifier combines several SAS input styles. It is placed before a format
(e.g., : 3. , : $char20. , : date7.) and tells SAS to read the variable beginning in the next
nonblank column and ending when either a blank column is read, the length of the variable
(if character) is reached, or the end of the data line is reached. This feature frees the user
from lining up data values in specific columns yet keeps the advantages of using special
formats such as COMMAw.d and DATEw. informats.

Sample program:

DATA COLON ;
 INPUT LNAME : $12. TAXDUE COMMA7. ;
DATALINES;
BACKENHEIMER 2,350
CUCCINELLI 1,230
;

PROC PRINT;
 FORMAT TAXDUE comma5. ;
RUN;

Sample output:

OBS LNAME TAXDUE

1 BACKENHEIMER 2,350
2 CUCCINELLI 1,230

2. The ampersand & modifier

The ampersand & modifier enables you to read character values that contain single embedded
blanks

By default LIST input style cannot read variables with embedded blanks within a character
string.

The ampersand & modifier instructs SAS to allow embedded blanks when reading
character variables. It can either precede or follow the $.

Pointer and pitfall:

Peculiar results when reading character data with LIST input style are often attributable to
omission of the & format modifier. If your character data consists of several “words” per
variable and you plan to use LIST input style, be sure you separate values for the variables by
at least two blanks.

Sample program:

DATA AMPERSND;
 INPUT NAME & $ AGE ;
DATALINES;
MARY KIM 34
JOHN DOE 28
;

PROC PRINT;
RUN;

Sample output:

OBS NAME AGE

1 MARY KIM 34
2 JOHN DOE 28

Diagnostic tools:
The ? and ?? format modifiers can be used for numeric variables.

Pointer and pitfall:

SAS supplies these diagnostic tools as aids:

Use the ? and the ?? modifiers only when you are comfortable with the presence of bad
data and SAS’s default reaction to it. Consider using them only when you want to avoid
long SAS Logs, when you are already aware that something may be wrong with the data,
and when you are willing to let SAS set these values to missing.

The ? Format Modifier

The ? format modifier suppresses the message about invalid data. But it still prints the
data line and the variable values.

Sample Log:

 1 DATA ERR2 ;
 2 INPUT IDCODE $ AGE NUM1 ? ;
 3 DATALINES;

 RULE: ----+----1----+----2----+----3----+----4----+----5---
 5 A02 27 2.7.1
 IDCODE=A02 AGE=27 NUM1=. _ERROR_=1 _N_=2
 NOTE: The data set WORK.ERR2 has 2 observations and 3 variables.
 NOTE: The DATA statement used 0.06 CPU seconds.

 6 ;
 7
 8 PROC PRINT ;
 NOTE: The PROCEDURE PRINT printed page 1.
 NOTE: The PROCEDURE PRINT used 0.02 CPU seconds.

 NOTE: The SAS session used 0.24 CPU seconds.
 NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC
 27512-8000

Sample Output:
 OBS IDCODE AGE NUM1

 1 A08 34 6.5
 2 A02 27 .

The ?? Format Modifier

The ?? format modifier suppresses the message about invalid data, the raw data listing,
and the variable listing. Thus ?? makes even “dirty” data look “clean” to the reader of the
SAS Log.

Sample Log:

 1 DATA ERR2 ;
 2 INPUT IDCODE $ AGE NUM1 ?? ;
 3 DATALINES;

 NOTE: The data set WORK.ERR2 has 2 observations and 3 variables.
 NOTE: The DATA statement used 0.04 CPU seconds.

 6 ;
 7
 8 PROC PRINT ;
 NOTE: The PROCEDURE PRINT printed page 1.
 NOTE: The PROCEDURE PRINT used 0.03 CPU seconds.

 NOTE: The SAS session used 0.24 CPU seconds.
 NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC

 Sample Output:
OBS IDCODE AGE NUM1

1 A08 34 6.5
2 A02 27 .

